channel的使用场景 🔗
把channel用在数据流动的地方:
- 消息传递、消息过滤
- 信号广播
- 事件订阅与广播
- 请求、响应转发
- 任务分发
- 结果汇总
- 并发控制
- 同步与异步
channel的基本操作和注意事项 🔗
channel 存在3种状态
- nil,未初始化,刚刚申明或者手动复制为nil
- active,正常运行中的可读可写
- closed,关闭时,千万不要认为关闭以后,channel的值是nil
channel 可进行3种操作
- 读
- 写
- 关闭
3种状态存在9种情况
操作 | nil的channel | 正常channel | 已关闭channel |
---|---|---|---|
<- ch | 阻塞 | 成功or阻塞 | 读到零值 |
ch <- | 阻塞 | 成功or阻塞 | panic |
close(ch) | panic | 成功 | panic |
对于nil通道的情况,也并非完全遵循上表,有1个特殊场景:当nil的通道在select的某个case中时,这个case会阻塞,但不会造成死锁
使用for range读channel 🔗
- 场景
当需要不断从channel读取数据时。
- 原理
使用for-range读取channel,这样既安全又便利,当channel关闭时,for循环会自动退出,无需主动监测channel是否关闭,可以防止读取已经关闭的channel,造成读到数据为通道所存储的数据类型的零值。
- 用法
for x := range ch{
fmt.Println(x)
}
使用v,ok := <-ch + select操作判断channel是否关闭 🔗
- 场景
v,ok := <-ch + select
操作判断channel是否关闭
- 原理
ok的结果和含义:
- `true`:读到通道数据,不确定是否关闭,可能channel还有保存的数据,但channel已关闭。
- `false`:通道关闭,无数据读到。
从关闭的channel读值读到是channel所传递数据类型的零值,这个零值有可能是发送者发送的,也可能是channel关闭了。
_, ok := <-ch
与select配合使用的,当ok为false时,代表了channel已经close。
下面解释原因,_,ok := <-ch
对应的函数是func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool)
,入参block含义是当前goroutine是否可阻塞,当block为false代表的是select操作,不可阻塞当前goroutine的在channel操作,否则是普通操作(即_, ok
不在select中)。返回值selected代表当前操作是否成功,主要为select服务,返回**received代表是否从channel读到有效值。**它有3种返回值情况:
- block为false,即执行select时,如果channel为空,返回(false,false),代表select操作失败,没接收到值。
- 否则,如果channel已经关闭,并且没有数据,ep即接收数据的变量设置为零值,返回(true,false),代表select操作成功,但channel已关闭,没读到有效值。
- 否则,其他读到有效数据的情况,返回(true,ture)。
我们考虑_, ok := <-ch和select结合使用的情况。
情况1:当chanrecv返回(false,false)时,本质是select操作失败了,所以相关的case会阻塞,不会执行,比如下面的代码:
func main() {
ch := make(chan int)
select {
case v, ok := <-ch:
fmt.Printf("v: %v, ok: %v\n", v, ok)
default:
fmt.Println("nothing")
}
}
// 结果:
// nothing
情况2:下面的结果会是零值和false:
func main() {
ch := make(chan int)
// 增加关闭
close(ch)
select {
case v, ok := <-ch:
fmt.Printf("v: %v, ok: %v\n", v, ok)
}
}
// v: 0, ok: false
情况3的received为true,即_, ok中的ok为true,不做讨论了,只讨论ok为false的情况。
最后ok为false的时候,只有情况2,此时channel必然已经关闭,我们便可以在select中用ok判断channel是否已经关闭。
- 用法
func main() {
ch := make(chan int, 1)
// 发送1个数据关闭channel
ch <- 1
close(ch)
print("close channel\n")
// 不停读数据直到channel没有有效数据
for {
select {
case v, ok := <-ch:
print("v: ", v, ", ok:", ok, "\n")
if !ok {
print("channel is close\n")
return
}
default:
print("nothing\n")
}
}
}
// 结果
// close channel
// v: 1, ok:true
// v: 0, ok:false
// channel is close
使用select处理多个channel 🔗
- 场景 需要对多个通道进行同时处理,但只处理最先发生的channel时
- 原理
select
可以同时监控多个通道的情况,只处理未阻塞的case。当通道为nil时,对应的case永远为阻塞,无论读写。特殊关注:普通情况下,对nil的通道写操作是要panic的。 - 用法
// 分配job时,如果收到关闭的通知则退出,不分配job
func (h *Handler) handle(job *Job) {
select {
case h.jobCh<-job:
return
case <-h.stopCh:
return
}
}
使用channel的声明控制读写权限 🔗
-
场景 协程对某个通道只读或只写时
目的:
- 使代码更易读、更易维护,
- 防止只读协程对通道进行写数据,但通道已关闭,造成panic。
-
用法
- 如果协程对某个channel只有写操作,则这个channel声明为只写。
- 如果协程对某个channel只有读操作,则这个channe声明为只读。
// 只有generator进行对outCh进行写操作,返回声明
// <-chan int,可以防止其他协程乱用此通道,造成隐藏bug
func generator(int n) <-chan int {
outCh := make(chan int)
go func(){
for i:=0;i<n;i++{
outCh<-i
}
}()
return outCh
}
// consumer只读inCh的数据,声明为<-chan int
// 可以防止它向inCh写数据
func consumer(inCh <-chan int) {
for x := range inCh {
fmt.Println(x)
}
}
使用缓冲channel增强并发 🔗
- 场景 异步
- 原理 有缓冲通道可供多个协程同时处理,在一定程度可提高并发性。
- 用法
// 无缓冲
ch1 := make(chan int)
ch2 := make(chan int, 0)
// 有缓冲
ch3 := make(chan int, 1)
// 使用5个`do`协程同时处理输入数据
func test() {
inCh := generator(100)
outCh := make(chan int, 10)
for i := 0; i < 5; i++ {
go do(inCh, outCh)
}
for r := range outCh {
fmt.Println(r)
}
}
func do(inCh <-chan int, outCh chan<- int) {
for v := range inCh {
outCh <- v * v
}
}
为操作加上超时 🔗
- 场景 异步
- 原理
使用
select
和time.After
,看操作和定时器哪个先返回,处理先完成的,就达到了超时控制的效果 - 用法
func doWithTimeOut(timeout time.Duration) (int, error) {
select {
case ret := <-do():
return ret, nil
case <-time.After(timeout):
return 0, errors.New("timeout")
}
}
func do() <-chan int {
outCh := make(chan int)
go func() {
// do work
}()
return outCh
}
使用close(ch)
关闭所有下游协程 🔗
- 场景 退出时,显示通知所有协程退出
- 原理 所有读ch的协程都会收到close(ch)的信号
- 用法
func (h *Handler) Stop() {
close(h.stopCh)
// 可以使用WaitGroup等待所有协程退出
}
// 收到停止后,不再处理请求
func (h *Handler) loop() error {
for {
select {
case req := <-h.reqCh:
go handle(req)
case <-h.stopCh:
return
}
}
}
使用chan struct{}作为信号channel 🔗
- 场景 使用channel传递信号,而不是传递数据时
- 原理 没数据需要传递时,传递空struct
- 用法
// 上例中的Handler.stopCh就是一个例子,stopCh并不需要传递任何数据
// 只是要给所有协程发送退出的信号
type Handler struct {
stopCh chan struct{}
reqCh chan *Request
}
使用channel传递结构体的指针而非结构体 🔗
- 场景 使用channel传递结构体数据时
- 原理 channel本质上传递的是数据的拷贝,拷贝的数据越小传输效率越高,传递结构体指针,比传递结构体更高效
- 用法
reqCh chan *Request
// 好过
reqCh chan Request
使用channel传递channel 🔗
- 场景 使用场景有点多,通常是用来获取结果。
- 原理 channel可以用来传递变量,channel自身也是变量,可以传递自己。
- 用法
package main
import (
"fmt"
"math/rand"
"sync"
"time"
)
func main() {
reqs := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
// 存放结果的channel的channel
outs := make(chan chan int, len(reqs))
var wg sync.WaitGroup
wg.Add(len(reqs))
for _, x := range reqs {
o := handle(&wg, x)
outs <- o
}
go func() {
wg.Wait()
close(outs)
}()
// 读取结果,结果有序
for o := range outs {
fmt.Println(<-o)
}
}
// handle 处理请求,耗时随机模拟
func handle(wg *sync.WaitGroup, a int) chan int {
out := make(chan int)
go func() {
time.Sleep(time.Duration(rand.Intn(3)) * time.Second)
out <- a
wg.Done()
}()
return out
}
本文收集来源: http://lessisbetter.site/2019/01/20/golang-channel-all-usage/